Publication Abstracts

Rind et al. 1990

Rind, D., R. Suozzo, N.K. Balachandran, and M.J. Prather, 1990: Climate change and the middle atmosphere. Part I: The doubled CO2 climate. J. Atmos. Sci., 47, 475-494, doi:10.1175/1520-0469(1990)047<0475:CCATMA>2.0.CO;2.

The impact of doubled atmospheric CO2 on the climate of the middle atmosphere is investigated using the GISS global climate/middle atmosphere model. In the standard experiment, the CO2 concentration is doubled both in the stratosphere and troposphere, and the sea surface temperatures are increased to match those of the doubled CO2 run of the GISS 9 level climate model. Additional experiments are run to determine how the middle atmospheric effects are influenced by tropospheric changes, and to separate the dynamic and radiative influences. These include the use of the greater high latitude/low latitude surface warming ratio generated by the Geophysical Fluid Dynamics Laboratory doubled CO2 experiments, doubling the CO2 only in either the troposphere or stratosphere, and allowing the middle atmosphere to react only radiatively.

As expected, doubled CO2 produces warmer temperatures in the troposphere, and generally cooler temperatures in the stratosphere. The net result is a decrease of static stability for the atmosphere as a whole. In addition, the 100 mb warming maximizes in the tropics, leading to improved propagation cinditions for planetary waves, and increased potential energy in the lower stratosphere. These processes generate increased eddy energy in the middle atmosphere in most seasons. With greater eddy energy comes greater eddy forcing of the mean flow and an increase in the intensity of the residual circulation from the equator to the pole, which tends to warm high latitudes. Increased gravity wave drag in some of the experiments also helps to intensify the circulation. The middle atmosphere dynamical differences found were on the order of 10-20% of the model values for the current climate, and, along with the calculated temperature differences of up to about 10°C, may have a significant impact on the chemistry of the future atmosphere including that of stratospheric ozone, the polar ozone "hole", and basic atmospheric composition.

Export citation: [ BibTeX ] [ RIS ]

BibTeX Citation

@article{ri09400v,
  author={Rind, D. and Suozzo, R. and Balachandran, N. K. and Prather, M. J.},
  title={Climate change and the middle atmosphere. Part I: The doubled CO2 climate},
  year={1990},
  journal={Journal of the Atmospheric Sciences},
  volume={47},
  pages={475--494},
  doi={10.1175/1520-0469(1990)047%3C0475%3ACCATMA%3E2.0.CO;2},
}

[ Close ]

RIS Citation

TY  - JOUR
ID  - ri09400v
AU  - Rind, D.
AU  - Suozzo, R.
AU  - Balachandran, N. K.
AU  - Prather, M. J.
PY  - 1990
TI  - Climate change and the middle atmosphere. Part I: The doubled CO2 climate
JA  - J. Atmos. Sci.
JO  - Journal of the Atmospheric Sciences
VL  - 47
SP  - 475
EP  - 494
DO  - 10.1175/1520-0469(1990)047%3C0475%3ACCATMA%3E2.0.CO;2
ER  -

[ Close ]

• Return to 1990 Publications

• Return to Publications Homepage